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2 IMNC, Université Paris VII-Paris XI, CNRS, UMR 8165, Bât. 104, 91406 Orsay, France
3 School of Mathematics and Statistics F07, The University of Sydney, NSW 2006, Australia

Received 27 January 2010, in final form 1 February 2010
Published 14 April 2010
Online at stacks.iop.org/JPhysA/43/175207

Abstract
We examine various second-degree difference equations which have been
proposed over the years and according to their authors’ claims should be
integrable. This study is motivated by the fact that we consider that second-
degree discrete systems cannot be integrable due to the proliferation of the
images (and pre-images) of the initial point. We show that in the present
cases no contradiction exists. In all cases examined, we show that there exists
an underlying integrable first-degree mapping which allows us to obtain an
appropriate solution of the second-degree one.

PACS numbers: 02.30.Ik, 04.60.Nc, 05.45.−a

1. Introduction

The name of Painlevé equations usually evokes one of the six equations discovered by Painlevé
and his school. The importance of these equations lies in the fact that their solutions introduce
new functions, the Painlevé transcendents. Painlevé [1] obtained the equations bearing his
name while classifying second-order differential equations of the form

w′′ = f (w′, w, t) (1.1)

from the point of view of integrability, based on the criterion which in modern parlance would
be qualified as singularity analysis. The results of Painlevé spurred further studies aiming at
the discovery of new transcendents. The works of Chazy [2], Garnier [3], more recently those
of Bureau [4] and even more recently the works of Cosgrove [5] spring to mind. These studies
did not lead to the discovery of new transcendents despite the fact that they studied equations
beyond the class of those analysed by Painlevé and his school. In particular, Chazy examined
equations of second degree in the second derivative. The general form of these equations is

(w′′)2 = f (w′, w, t)w′′ + g(w′, w, t). (1.2)
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Chazy’s study was only recently completed by Cosgrove, but still the complete classification
of equations of the form (1.2) possessing the Painlevé property is not available. The existence
of a quadratic term in (1.2) and the fact that one must consider square roots in order to
integrate the equation does not pose a serious problem. While integrating (1.2), one can
follow a solution by analytic continuation and the only points that would cause difficulties are
the points where a singularity that induces multivaluedness appears. But such singularities are
absent by definition in a system which possesses the Painlevé property.

The situation is different where discrete Painlevé equations are concerned. The analogues
of the Chazy–Cosgrove equations do exist; however, their second-degree form is problematic.
We suggest that those cases which are integrable should be expressible as first-degree equations.
Second-degree equations lead generally to multivaluedness introduced by square roots: the
iteration of initial data generically leads to an exponentially increasing number of branches.
In [6] we have studied various correspondences and concluded that the proliferation of images
(and preimages) of a given point is incompatible with integrability. In the light of this remark,
how can one interpret the recent results of [7], where second-degree, second-order mappings
were derived and where it was argued that they were integrable? It is the aim of this paper to
show that these systems are integrable indeed and that with the adequate parametrization they
can be expressed as first-degree ones.

2. Some examples of hidden first-degree systems

Before proceeding to examples of second-degree mappings, we clarify our terminology. In
what follows, we shall limit our discussion to second-order mappings since we focus on
discrete Painlevé equations. We shall use the term first-degree (second-order) mapping for
systems of the form

A(xn)xn+1xn−1 + B(xn)xn+1 + C(xn)xn−1 + D(xn) = 0. (2.1)

This means that xn+1 can be expressed in terms of xn−1 through a homographic mapping. A
well-known example of first-degree, second-order mapping is the symmetric QRT which has
the form

f3(xn)xn+1xn−1 − f2(xn)(xn−1 + xn−1) + f1(xn) = 0. (2.2)

The term ‘second-degree’ mapping is used for systems of the form

A(xn)x
2
n+1x

2
n−1 + B(xn)xn+1x

2
n−1 + C(xn)x

2
n+1xn−1 + D(xn)x

2
n+1 + E(xn)x

2
n−1

+ F(xn)xn+1xn−1 + G(xn)xn+1 + H(xn)xn−1 + J (xn) = 0. (2.3)

Evolving this mapping to either forwards or backwards entails taking square roots, thus
inducing multivaluedness.

The first example of a discrete Painlevé equation which was presented as a second-degree
mapping can be found in a work of the present authors in collaboration with Nijhoff and
Papageorgiou [8]. While constructing Lax pairs for discrete Painlevé equations, we obtained
a system which we opted to present in the form

xn+1 + xn−1 + 2
zn − c

xn

=
√

(a − xn − xn+1)2 + 4(zn + c) +
√

(a − xn − xn−1)2 + 4(zn−1 + c)

(2.4)

where zn = αn + β. However, a careful analysis of the results of [8] reveals the fact that (2.4)
is nothing but a way to present the equation dubbed asymmetric discrete Painlevé I [9]. The
latter has the form
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xn+1 + xn + yn = a +
zn − c

yn

(2.5a)

yn−1 + xn + yn = a +
zn + c

xn

, (2.5b)

where only first-degree mappings appear. However, if we eliminate all reference to y from
(2.5) and its up- and down-shifts, we obtain precisely (2.4) for x which is of second degree in
xn+1 and xn−1. On the other hand, it is quite unnecessary to consider (2.4): if we wish to know
the values of x, it suffices to iterate (2.5).

The second example we are going to present also comes from the work of some of the
present authors in collaboration with Nijhoff, Satsuma and Kajiwara [10]. Starting from the
equation we called the ‘alternate discrete Painlevé equation’,

zn

xn+1xn + 1
+

zn−1

xnxn−1 + 1
= −xn +

1

xn

+ zn + μ, (2.6)

we derived its modified form. Putting

yn = znxn+1

xnxn+1 + 1
, (2.7)

we obtained

(yn+1 − yn−1)
2y4

n + 2(yn+1 + yn−1)y
2
n(1 − yn)z

2
n + z2

n

(
4y3

n + y2
n

(
z2
n − μ2 − 4

)
− 2ynz

2
n + z2

n

) = 0, (2.8)

which is quadratic in yn±1. The solution proposed in [10] was to show that (2.8) could in fact
be obtained by integrating a third-order equation

yn+1y
2
nyn−1zn−1 − yn−2yny

2
n−1zn + ynyn−1(zn − zn−1)(ynyn−1 − znzn−1)

− znzn−1(ynzn−1 − yn−1zn) = 0, (2.9)

where yn−2 and yn+1 enter linearly. A more elegant solution was obtained by Nijhoff [11]. He
introduced the auxiliary variables u and v through un = yn − 1 and vn = xnun + μ/2. The
latter obey the equations

vn + vn+1 = znun

un − 1
(2.10a)

unun−1 = v2
n − μ2/4, (2.10b)

and given the form of (2.10a), it is straightforward to eliminate the variable u and obtain an
equation for v: (

vn + vn+1

vn + vn+1 − zn

)(
vn + vn−1

vn + vn−1 − zn−1

)
= v2

n − μ2/4, (2.11)

which is obviously of first degree in each of the vn±1.
Two more examples shall be presented in this section, coming from a work of Estévez

and Clarkson [12]. They started by examining the Miura of Painlevé II and its relation to
the equation known as P34 (which can be considered as a ‘modified’ PII). They obtained the
auto-Bäcklund transformations of PII and derived a discrete equation related to, what they
called, the potential P34. It has the form

(un+1 − un−1)(un(un+1 − un−1) + zn((un+1 − un)(un − un−1) − c)) + z2
n = 0 (2.12)

where zn = n − 1/2 and c = t/2, the quantities n and t being the parameter and the
independent variable of the continuous PII, respectively: x ′′ = 2x3 + tx + n. Equation (2.12)
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must be considered as a contiguity relation of the solutions of the potential P34. Clearly (2.12)
is a second-degree equation and as such should be incompatible with integrability. While this
is in principle true if one is talking about all the solutions of (2.12), the situation is different
if we are interested in the contiguity relations of the potential P34. We start from the relation
of u to the solution x of PII,

x(t, n) = un(t) − un+1(t). (2.13)

Using (2.13) in (2.12), we obtain u in terms of x:

un = z2
n

(xn + xn−1)2
+ zn

c − xnxn−1

xn + xn−1
. (2.14)

Thus, given xn, one can compute un explicitly. In order to obtain x for various values of n, one
needs just the contiguity relation of the solutions of PII. The latter was first obtained by Jimbo
and Miwa [13] and again by the present authors in collaboration with Fokas [14]. It has the
form

zn+1

xn+1 + xn

+
zn

xn + xn−1
+ x2

n + c = 0. (2.15)

Thus, instead of (2.12), one should consider the system (2.14), (2.15) as the contiguity relation
for the potential P34. The advantage of this representation is that one deals only with first-
degree mappings.

Estévez and Clarkson also presented the contiguity relation of the solutions of the modified
Painlevé IV. Starting from PIV in the form x ′′ = x ′2/(2x) + 3x3/2 + 4tx2 + 2(t2 − 2n)x + μ/x,
they derived its ‘modified’ analogue and obtained the contiguity relation for its solutions. The
latter is a second-degree mapping of the form

(un+1 − un−1 + 2t)(un − un−1)(un − un+1)(un + 2tzn) + (un − zn(un+1 − un−1))
2

−μ(un+1 − un−1 + 2t)2 = 0 (2.16)

where zn = n + 1/2, the quantities n and t being the parameter and the independent variable of
the continuous PIV, respectively. (Note that equation (2.16) as given by Estévez and Clarkson
contains some small misprint, which can be traced back to their equation (3.17) and which has
been corrected here.) The relation of u to the variable x of PIV is

x(t, n, μ) = un(t, μ) − un−1(t, μ). (2.17)

However, using (2.17) it is not possible to obtain u in terms of x explicitly, and thus a different
approach is necessary. We shall not go into all the details of the derivation which is based on
the results we presented in [15]. As shown there, the contiguity relation of the solution of PIV

is just the asymmetric discrete Painlevé I, we encountered at the beginning of this section:

xn+1 = 2t +
zn − c

yn

− xn − yn (2.18a)

yn−1 = 2t +
zn + c

xn

− yn − xn (2.18b)

where c is related to μ through μ = c2. Using both x and y, we can now express u as

un = (xnyn − zn)(2t − xn − yn) + c(yn − xn). (2.19)

Using (2.18) and (2.19) and eliminating x and y, one can show in a straightforward way
that (2.16) is satisfied. On the other hand, (2.19) allows one to bypass the second-degree
contiguity (2.16) and obtain directly the solution of the modified PIV for the various values of
the parameter n, using only first-degree equations.
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3. On q-Painlevé equations obtained from the lattice-modified KdV

In a recent publication [7], Field et al considered similarity reductions of the q lattice-modified
KdV equation. They started by the multidimensional system

ajvjvij + aivvj = aivivij + ajvvi (3.1)

where the index in v indicates that a variable has been up-shifted, i.e. vi ≡
v(a1, . . . , ai−1, qai, ai+1, . . . , aM). The similarity reduction was obtained using the constraint

v(q−Na1, q
−Na2, . . . , q

−NaM) = γ v(a1, a2, . . . , aM). (3.2)

The authors of [7] considered multi-variable similarity reductions by taking N = 1 and
coupling several lattice directions. By implementing the constraint on (3.1) for M = 3 and
M = 4, they obtained q-discrete Painlevé equations of second degree. In this section, we shall
show that these q-Painlevé equations can be expressed as first-degree systems and moreover
correspond to discrete systems already identified.

Before proceeding further, let us proceed to a rapid counting of the degrees of freedom
of the reduced systems obtained from (3.1), (3.2). We have M values of ai, but since (3.1)
is homogeneous in ai, we have in fact M − 1 effective parameters. In addition, γ alternates
between ‘even’ and ‘odd’ values depending on the parity of the number of shifts in v on the
rhs of (3.2). For instance, if we define v(q−Na1, q

−Na2, . . . , q
−NaM) = γev(a1, a2, . . . , aM),

then we have v(q1−Na1, q
−Na2, . . . , q

−NaM) = γov(qa1, a2, . . . , aM) and similarly for any
odd number of shifts. However, if MN is odd, the two degrees of freedom of γ may also be
reduced to a single one by a gauge. Irrespective of the parity of M and N the gauge where we
multiply the v’s with an even number of shifts by φ and those with an odd number of shifts
by ψ leaves (3.1) invariant. If MN is even, this gauge has no effect on the γ ’s since the v’s
on both sides of (3.2) have a number of shifts of the same parity. On the other hand, if MN

is odd, and since we shall focus on the N = 1 case, only the parity of M will play a role, the
gauge changes γe to γeψ/φ and γo to γoφ/ψ . By choosing φ and ψ appropriately, we may
make the two γ ’s equal without loss of generality. Thus, when N = 1 and M is odd, the total
number of variables is just M, while it is equal to M + 1 if M is even.

The first interesting case of Field et al corresponds to M = 3. Here one starts from three
copies of the lattice mKdV, involving three parameters, say a, b and c. The reduced system is
obtained by considering the evolution along the parameter a, which becomes the independent
variable, while b and c become the parameters of the reduced equation. The authors first write
the latter as a system of two mappings:

γ v = w

aγ̃ ṽ − bw˜
aw˜ − bγ̃ ṽ

(3.3a)

w˜ = v

aw − cv˜
av˜− cw

, (3.3b)

where w(a, b, c) = v(a, b, q−1c) and the tilde in (3.3) indicates an up- or down-shift in a.
(According to our explanations in the preceding paragraph, γ and γ̃ play the role of γe and
γo.) Field et al proceed from (3.3) to the derivation of a q-Painlevé equation which is of
second degree. However, this is due to their particular choice of variables. As we shall now
show a different choice, this allows one to obtain a first-degree equation which, moreover, is
a well-known one. We start by introducing new variables

x = w

γv
, y = ṽ

w
.
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From (3.3a), we find

(γ γ̃ )yxy˜ = a + bx

ax + b
, (3.4a)

while from the up-shift of (3.3b), we obtain

(γ γ̃ )̃xyx = ã + cy

ãy + c
(3.4b)

where, naturally, ã = qa. We remark that as expected from our analysis above, the γ ’s
introduce just one parameter: only the product α−1 ≡ γ γ̃ appears in the equation. In order
to bring (3.4) to a more easily recognizable form, we put x = u2n, y = u2n+1 and take
zn = a0q

n/2. We can rewrite now (3.4) as

um+1um−1 = α

um

zm + βe,oum

zmum + βe,o

(3.5)

where βe = b and βo = cq−1/2, and where the index e or o is determined by the parity of
m. Equation (3.5) has three degrees of freedom, as expected for M = 3. One recognizes
readily the q-PIII equation we derived in [16] in collaboration with Kruskal and Tamizhmani.
Equation (3.5) was studied in detail by Kajiwara and Kimura [17] who showed that the
geometry of its transformations can be described by the affine Weyl group A

(1)
2 × A

(1)
1 .

We turn now to the case M = 4. We start from three copies of (3.1) where i is always
taken equal to 1 (and a ≡ a1, b ≡ a2, c ≡ a3, d ≡ a4). Moreover for j = 2, we write the
equation up-shifted in the 3-direction, while for j = 4, we down-shifted it in the 4-direction.
Down-shifted variables are indicated by an overlined index. We have

cv3v13 + avv3 = av1v13 + cvv1 (3.6a)

bv23v123 + av3v23 = av13v123 + bv3v13 (3.6b)

dvv1 + av4v = av14v1 + dv4v14. (3.6c)

We solve (3.6a) for v3/v1 to get

v3

v1
= a + cy

c + ay
(3.7)

where we define y = v/v13. Similarly, we define x by v3/v123 and w by v14/v, so
w̃ ≡ w1 = v4/v1. Using the similarity relation (3.2), v1234 = γev, up-shifted in the 123-
directions to v4 = γov123, the left-hand side of (3.7) can be expressed as γ −1

o xw̃. So we
find

xw̃ = γo

a + cy

c + ay
. (3.8a)

In the same way, we solve (3.6b) for v23/v13, which by the similarity relation is equal to
γ −1

e v14/v13 and find

wy = γe

a + bx

b + ax
. (3.8b)

Next, we solve (3.6c) for v/v14, which can be expressed in terms of x̃ ≡ x1 = v13/v1123

through the similarity relation as γ −1
e yx̃ and find

yx̃ = γe

a + dw̃

d + aw̃
. (3.8c)

6
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A careful treatment of (3.6c) down-shifted in the 1-direction leads to

y˜x = γo

a˜+ dw

d + a˜w
(3.8d)

where a˜ = q−1a. In the same way, all three equations (3.8a)–(3.8c) can be (up and down)
shifted in the 1-direction by an arbitrary number of steps, provided the indices of the γ ’s are
interchanged on odd number of shifts, and the a’s suitably evolved. Equation (3.8) can be
brought to a more easily recognizable form; we put w = u3n−1, x = u3n, y = u3n+1 and take
zn = a0q

n/3. We find

um+1um−1 = γm

zm + αmum

αm + zmum

(3.9)

where γm stands for γe and γo and log α = η + jmκ + j 2mλ, i.e. α reflects the ternary symmetry
of b, c, d. Here, since M(=4) is even, we have five degrees of freedom. Equation (3.9), which
is obviously of first degree, is a known q-Painlevé equation. It was first obtained in [18], the
full complement of its degrees of freedom was presented in [16], while the geometry of its
transformations was shown [19] to be described by the affine Weyl group D

(1)

5 .
If one tries to eliminate one of the variables w, x, y in terms of the two others (or, even

worse, two variables in terms of a single one), one is led to higher degree mappings like the
ones obtained by Field et al. However, there exists a possibility of using the homographic
character on the rhs of (3.8) to eliminate one variable out of two, for instance whenever a γo

appears. We thus eliminate w in terms of x and y˜ and y in terms of x and w̃. We find

cxw̃ − aγo

axw̃ − cγo

dxy−̃ a˜γo

a˜xy˜− dγo

= γe

a + bx

b + ax
(3.10)

and obtained two other equations in a similar way. Note, however, that variables of all
three names appear . . . , w˜, y˜, x, w̃, ỹ, . . . though with specific shifts. Equation (3.10), in the
appropriate gauge, has been obtained in [20].

4. Conclusion

In this paper, we addressed the question of second-degree discrete Painlevé equations. Our
main argument is that, contrary to the situation in the continuous case, second-degree discrete
systems (in the sense explained in section 2) are not integrable. This is reinforced by our
results in [6] on the non-integrability of correspondences. However, the derivation of the
systems examined here would strongly suggest an integrable character. Thus, the present
work attempted to lift this apparent contradiction leading to the following interesting result.
In every case where a second-degree equation was obtained there existed a transcription to a
first-degree system usually through the adequate choice of dependent variables.

There exists one notable exception to our argument on the non-integrability of second-
degree mappings. It is related to the QRT mapping [21], which in its symmetric form can be
written as

xn+1 = f1(xn) − xn−1f2(xn)

f2(xn) − xn−1f3(xn)
(4.1)

7
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where the fi are specific quartic polynomials. The mapping possesses the invariant


(xn−1, xn;K) ≡ (α0 + Kα1)x
2
n−1x

2
n + (β0 + Kβ1)xn−1xn(xn−1 + xn)

+ (γ0 + Kγ1)
(
x2

n−1 + x2
n

)
+ (ε0 + Kε1)xn−1xn + (ζ0 + Kζ1)(xn−1 + xn)

+ (μ0 + Kμ1) = 0 (4.2)

where K plays the role of the integration constant. As is well known, (4.2) can be parametrized
in terms of elliptic functions. The integrability of the QRT mapping is not in contradiction with
the fact that correspondences associated with the general biquadratic equation are believed
(based on growth arguments) to be non-integrable. If we insist on viewing the QRT mapping
as a correspondence, we proceed as follows. Starting from xn−1, xn, we compute K such that

(xn−1, xn;K) = 0. Having fixed the value of K, the solutions of 
(X, xn;K) = 0 are
X = xn−1 and X = xn+1 where the latter is obtained from (4.1). At the next step, solving

(Y,X;K) = 0 for both values of X, we do not find four values for Y but only three, namely
xn+2, xn−2 defined by the up- and down-shift of (4.1) and xn, the latter being obtained through
two different paths which reconnect. Iterating further due to these reconnections the growth of
the number of images of a given initial point x is not exponential but linear. Similar arguments
can be (and have been [6]) presented for the asymmetric QRT mapping, the integration of
which has been given in [22, 23].

Of course, the argument presented here is specific to the QRT mapping and would not
apply to other second-degree systems where generically no reconnections take place. The
latter considered as correspondences would generically lead to an exponential growth of the
number of images (and preimages) of a given point, a feature deemed incompatible with
integrability. The approach presented in this paper consisted in salvaging the integrability of
the systems examined by rewriting them as first-degree ones in the suitable variables. As a
bonus in all the cases examined, the resulting (first-degree) equation was one of the already
identified discrete Painlevé equations.
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